
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 28 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713646857

Liquid Structural Theories of Two- and Three-Dimensional Plasmas
K. I. Goldenabc; N. H. Marchabc

a Department of Theoretical Physics, Research School of Physical Sciences and Engineering, The
Australian National University, Canberra, Australia b Theoretical Chemistry Department, University of
Oxford, Oxford, UK c Department of Computer Science and Electrical Engineering, University of
Vermont, Burlington, VT, USA

To cite this Article Golden, K. I. and March, N. H.(1994) 'Liquid Structural Theories of Two- and Three-Dimensional
Plasmas', Physics and Chemistry of Liquids, 27: 3, 187 — 193
To link to this Article: DOI: 10.1080/00319109408029524
URL: http://dx.doi.org/10.1080/00319109408029524

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713646857
http://dx.doi.org/10.1080/00319109408029524
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Phys. Chem. Liq., 1994, Vol. 27, pp. 187-193 
Reprints available directly from the publisher 
Photocopying permitted by license only 

0 1994 Gordon and Breach Science Publishers S.A. 
Printed in Malaysia 

LETTER 

Liquid Structural Theories of Two- and 
Three-Dimensional Plasmas 

K. I. GOLDEN and N. H. MARCH 

Department of Theoretical Physics*, Research School of Physical Sciences 
and Engineering, The Australian National University, Canberra, 

A.  C. T. 2601, Australia 

Theoretical Chemistry Department, University of Oxford, 5 South Parks Road, 
Oxford OX1 3UB, UK. 

(Received I May 3993) 

Following a treatment of a two-dimensional and one-component plasma (OCP) with a In r interaction 
which possesses a Fourier transform, proposals are made for a generalized structural theory in three 
dimensions, based on a separation of the direct correlation function into a ‘‘long’’ and a “short” range part. 

KEY WORDS: Three-atom correlation function, Liquid metals, One-component plasma. 

In this Letter, previous in formally solving the lowest-order member of 
the Born-Green-Yvon (BGY) hierarchy for an assumed pair potential # ( I )  possessing 
a Fourier transform &k) will be applied and also generalized. The main application 
considered is a two-dimensional (2D) one-component plasma (OCP) with a In r 
interaction, though an outline is also given of a proposed approach to a liquid 
structural theory for a three-dimensional plasma such as liquid Na or K near 
freezing. The generalization effected is to exhibit the r space ‘shape’ of a general 
structural theory, avoiding now the need for #(r)  to possess a Fourier transform. 

We first carry out k-space calculations which assume that the pair potential 4 ( r )  
possesses the Fourier transform $(k) .  This will set the stage for the calculations 
involving the more general non-Fourier transformable #(r) below. 

It can be shown3 that &k) can be written in terms of the liquid structure factor 
S(k),  where ( l / n ) [ S ( k )  - 11 = h(k) is the Fourier transform of g(r) - 1: g(r) is the pair 
correlation function. The somewhat formal result is3 

* Present Address: Department of Computer Science and Electrical Engineering, University of Vermont, 
Burlington, VT 05405, USA. 
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188 K. 1. GOLDEN AND N. H. MARCH 

where E(k)  involves both the three-particle correlation function g3 and the force 
--d$(r)/dr. The k-space analysis of the BGY equation provides 

where 

p-  ' = kBT. In Eq. (3), i is the Fourier transform of t in the r-space expression 

Generally to make progress in calculating c (k), one must decouple g3. In the case 
of the 2D OCP withln r interaction, however, the pair function g(r)  has been 
calculated exactly by Jancovici4 for a particular coupling strength r = j Z 2  = 2 ( p -  ' 
and 2 are thermal energy per unit length and charge per unit length); Jancovici 
obtained g(r) = 1 - exp( - r2 /a2) ,  whence S(k)  = 1 - exp( -k2a2/4); a is the 2D 
Wigner-Seitz radius. Consequently, for this particular reference liquid, E(k)  can 
be exactly calculated from Eq. (1) since $(k) = 27rZ/k2. One obtains 

The left-hand side of Eq. (4) versus wavenumber ka is plotted in Figure 1 (see also 
Golden et a1.7 The continuous curve shows the exact value of E(k)  given by Eq. (4) 
with S ( k )  = 1 - exp(k2a2/4). This can now be used as a standard for comparison in 
assessing the accuracy of two well known approximate theories. 

The simplest approximation for @k) is to put 1 (k) = 0 in Eq. (2) Then n@k) = 
S(k)  - 1, whence Eq. (1) simplifies to the well-known Debye-Huckel (DH) formula. 

E(k) = 1 - 1/S(k) is the Fourier transform of the direct correlation function c(r). This 
approximation evidently uses the asymptotic form for c(r), namely c(r) = -/l$(r), 
outside its proper range of validity. Nevertheless, it is of interest to note the result 

as the dash-dot-dash curve of Figure 1 (see also Ref. [S]). 
Transcending the DH approximation, the hypernetted chain (HNC) formula is 
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- Exact 

-.- DH 

ka 

Figure 1 The function [k2/(2nP2j)]I?(k) versus ka for the 2 D  OCP with In r interaction potential. The 
solid curve is exact; the dash-dot-dash curve represents the Debye-Hiickel approximation; and the dash 
curve represents the hypernetted chain approximation. 

given by3 

n " I' EHNc(k)  = -- BU(k)S(k) - - S(k)  - 1 , 
1 - I  

n 

where 

(7) 

is calculated via the potential of mean force, U(r) ,  derived from the definition g(r)  = 

exp[-pU(r)] and the exact pair correlation function, g(r )  = 1 - exp(-r2/a2), for the 
2 D  OCP at r = 2. The formula for -k2E",,,-(k)/(27rZ2/?) which follows from Eqs. (7) 
and (8) is displayed as the dash curve in Figure 1. 

Not surprisingly, the HNC result (7) fits better with the exact form (4) than the 
DH result (6) though neither tends at large k to a finite constant given by the exact 
theory. It is, of course, of considerable interest that for the value of r = 2 of the 
coupling strength, one has an exact test of the accuracy of approximate structural 
theories. 

Up to this point, the structure of the BGY equation for potentials 4(r)  which 
possess a Fourier transform has been exploited. But for a liquid like argon, the 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
1
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



190 K. 1. GOL.DEN AND N. H. MARCH 

Lennard-Jones 6- 12 potential is a reasonable zeroth order approximation and this 
does not have a Fourier transform. Our purpose below is therefore to recast the 
theory into an r space form applicable to more general pair potentials. 

To do so, let us start by subtracting Bo(k) from both sides of Eq. (1) and introducing 
the function F(k) = n&k) + Po(k). Taking the inverse transform of the result, one 
then obtains 

where F(r) is evidently the inverse transform of F”(k). Below, Eq. (9) will be solved on 
the assumption that though +(r) and U(r)  do not separately have Fourier transforms, 
the difference A(r) does. 

With this assumed, the Fourier transform of Eq. (9) gives 

The simplest application of Eq. (10) is now to relate to the often useful, though clearly 
approximate, HNC approximation. To motivate such a relation, we recall that at 
large r ,  $ ( I )  + - k,Tc(r) and U(r)  - - k,Th(r), whence 

Guided by Eq. (ll), we are led to write its small-k counterpart in the form 

W) 
- ~ = [S(k) - 11 - E(k) + 6(r); small-k limit, 
kBT 

where 

6(r) = n dr In g(r)  + 1 - s 
The k-independent 6(r) correction guarantees the exuctness of Eq. (12) through O(ko);  
the coupling parameter, r, which was introduced above for the 2 D  OCP with In r 
interaction, is generally defined to be the ratio of the average interaction energy to 
the thermal energy; e.g., = B(Ze)*/a for the 3D ionic OCP with charge Ze. We 
note that in the weak coupling limit (r < l), 6(r) = -r/4 for the 2 D  OCP with In r 
interaction. Eq. (12) is a valuable result for what follows. 

We turn now to the “inverse” problem of classical liquid structure theory. The 
so-called “inverse” problem, namely the extraction of the pair potential 4(r )  from 
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diffraction measurements, was proposed by Johnson and March6. They recognized 
that the force (BGY) equation again provided the fundamental route. But then, 
decoupling of q3 is required’ which is often uncontrolled and violates the correct 
limiting result c(r)+ -p4 ( r )  at large r ,  and this does not permit the required 
accuracy to extract &). Though the decoupling of g 3  has been bypassed in the work 
of Reatto’ and co-workers, the price paid is to invoke computer simulation as the 
“corrector” in an iterative predictor-corrector technique. It remains of considerable 
importance to have a largely analytical solution of this inverse problem. 

To this end, we outline a proposed solution by returning to the thermodynamically 
consistent decomposition of Kumar et al.’ of the direct correlation function: they 
write c(r) = cp(r) + c,(r), where cp(r) and cJr) are the “potential” and “cooperative” 
parts. Keeping this decomposition in mind, Eq. (10) can be rewritten as 

Kumar et al. * emphasized that the virial and compressibility routes to the equation 
of state were thermodynamically consistent, provided only that the cooperative part 
c,(k) -+ 0 as k + 0; thus Z,(k) + Z(k) = 1 - 1/S(k) in this limit. This property and the 
structure of Eq. (12) suggest rewriting the right-hand side of Eq. (14) as follows: 

[S (k )  - 1 - c“(k)] + 6(r) 
I‘(k) 

c“,(k) + Zc(k) = 1 + 

Since we have now arranged the last term on the right-hand side of Eq. (15) to 
tend to zero as k -+ 0 from Eq. (12), we propose the “closure” of the present theory 
by identifying Z,,(k) as the first two right-hand side terms of (15), whence 

The final step in reaching the proposed solution of the inverse problem is to 
combine Eqs. (16) and (10). One obtains 

with its r-space counterpart 

A(r) - II dr’A(r’)cp(lr - r’l) s 
= kBTn dr’c(r’)c(lr - r’l) - kBTd(r)c(r); r # 0. s 
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192 K.  I. GOLDEN AND N. H. MARCH 

Eq. (9), which is formally exact, and the approximate Eq. (18) represent the principal 
results of this Letter. Eq. (18) is expected to be especially accurate at large r because 
of the underlying requirement of thermodynamic consistency; at small I ,  it is less 
satisfactory. By contrast, the complementary HNC structure 

A(?) - n dr’A(r’)c(lr - r’l) = k,Tn dr’c(r’)c(lr - r’l) J J (19) 

is more satisfactory at small I ,  but is less accurate at large r .  
Of course, in applying Eq. (18) to extract +(r), one has immediately to recall from 

Ref. [2] that cp(r )  involves & ( I )  itself as well as T, n and g(r). Therefore, for a given 
thermodynamic state, cp(r) is uniquely determined in terms of 4(r)  provided diffraction 
measurements on S(k)  and also its density derivative aS(k)/an are made. Thus with 
a starting approximation to &r), say &(r), experimental data then determine 
completely the right-hand side of Eq. (18), and hence a first approximation p41(r) 
since -pU(r)  = In g(r) is also known from the diffraction measurements. One then 
recalculates cp(r) with this reset approximation to q5(r), and iterates to self consistency. 

The essential points of this Letter can be summarized as follows. The shape of 
classical liquid structure theory is determined by the solution of the force equation 
( I )  [with (2)]. This leads to an r space theory in which the difference between the 
pair potential &r) and the potential of mean force U(r) ,  denoted throughout this 
Letter by A(r), is a central quantity for the theory. Provided that A(r) has a Fourier 
transform (FT) &k), even when such FTs do not exist for &(r) and U(r) separately, 
one can write A(r) precisely as the difference between a function F(r) and the 
convolution of this same function with the direct correlation function c(r) as in Eq. (9). 

If one makes contact, for example, with HNC approximation of classical liquid 
structure theory, then the FT of F(r) ,  is = - [ S ( k )  - l]’, where S ( k )  is 
the liquid structure factor. Guided by the HNC structure for A(r) at large r ,  we 
formulate its small-k counterpart $k)  in a way which guarantees thermodynamic 
consistency at k -, 0. To set up a theory of F(k)  for all k, the thermodynamically 
consistent decomposition of c(r) into the sum cp(r) + c,(r) is finally invoked. A form 
of F(k)  and ultimately A(r) [Eq. (18)] is then proposed solely in terms of c(r) and 
cp(r), the latter depending in an explicitly known way on $ ( I ) ,  g(r), and the density 
derivative of the pair function. 

In summary, the 2D OCP has been considered within an exact liquid structural 
theory for one coupling strength r = 2. Comparison has been made with the 
Debye-Huckel and HNC approximations. Then, the shape of an r space theory 
avoiding the assumption that the pair potential &r) has a Fourier transform has 
been exposed. Finally, an outline proposal is presented, based on a separation of the 
direct correlation function c(r) into “potential” and “cooperative” parts, which may 
well have application to three-dimensional plasmas such as liquid Na or K. 
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